
Structured Chain-of-Thought Prompting for Code Generation

JIA LI (he/him/his), GE LI, YONGMIN LI, and ZHI JIN, Key Laboratory of High Confidence
Software Technologies, Ministry of Education, Peking University, Haidian, China and School of Computer
Science, Peking University, Haidian, China

Large Language Models (LLMs) have shown impressive abilities in code generation. Chain-of-Thought (CoT)
prompting is the state-of-the-art approach to utilizing LLMs. CoT prompting asks LLMs first to generate
CoTs (i.e., intermediate natural language reasoning steps) and then output the code. However, the accuracy
of CoT prompting still cannot satisfy practical applications. For example, gpt-3.5-turbo with CoT prompting
only achieves 53.29% Pass@1 in HumanEval. In this article, we propose Structured CoTs (SCoTs) and present
a novel prompting technique for code generation named SCoT prompting. Our motivation is that human
developers follow structured programming. Developers use three programming structures (i.e., sequential,
branch, and loop) to design and implement structured programs. Thus, we ask LLMs to use three programming
structures to generate SCoTs (structured reasoning steps) before outputting the final code. Compared to
CoT prompting, SCoT prompting explicitly introduces programming structures and unlocks the structured
programming thinking of LLMs. We apply SCoT prompting to two LLMs (i.e., gpt-4-turbo, gpt-3.5-turbo, and
DeepSeek Coder-Instruct-{1.3B, 6.7B, 33B}) and evaluate it on three benchmarks (i.e., HumanEval, MBPP, and
MBCPP). SCoT prompting outperforms CoT prompting by up to 13.79% in Pass@1. SCoT prompting is robust
to examples and achieves substantial improvements. The human evaluation also shows human developers
prefer programs from SCoT prompting.

CCS Concepts: • Computing methodologies→ Neural networks; Natural language processing; • Software
and its engineering→ Automatic programming;

Additional Key Words and Phrases: Code Generation, Large Language Models, Prompting Engineering

ACM Reference format:
Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2025. Structured Chain-of-Thought Prompting for Code Generation.
ACM Trans. Softw. Eng. Methodol. 34, 2, Article 37 (January 2025), 23 pages.
https://doi.org/10.1145/3690635

This research is supported by the National Natural Science Foundation of China (Nos. 62192731, 62152730), the National
Key R&D Program (No. 2023YFB4503801), the National Natural Science Foundation of China (Nos. 62072007, 62192733,
61832009, 62192730), and the Major Program (JD) of Hubei Province (No. 2023BAA024).
Authors’ Contact Information: Jia Li, Key Laboratory of High Confidence Software Technologies, Ministry of Educa-
tion, Peking University, Haidian, China and School of Computer Science, Peking University, Haidian, China; e-mail:
lijia@stu.pku.edu.cn; Ge Li (corresponding author), Key Laboratory of High Confidence Software Technologies, Ministry of
Education, Peking University, Haidian, China and School of Computer Science, Peking University, Haidian, China; e-mail:
lige@pku.edu.cn; Yongmin Li, Key Laboratory of High Confidence Software Technologies, Ministry of Education, Peking
University, Haidian, China and School of Computer Science, Peking University, Haidian, China; e-mail: liyongmin@
pku.edu.cn; Zhi Jin, Key Laboratory of High Confidence Software Technologies, Ministry of Education, Peking University,
Haidian, China and School of Computer Science, Peking University, Haidian, China; e-mail: zhijin@pku.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7392/2025/1-ART37
https://doi.org/10.1145/3690635

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

https://orcid.org/0000-0002-5579-8852
https://orcid.org/0000-0002-5828-0186
https://orcid.org/0009-0001-3702-0043
https://orcid.org/0000-0003-1087-226X
https://doi.org/10.1145/3690635
mailto:liyongmin@pku.edu.cn
mailto:liyongmin@pku.edu.cn
mailto:permissions@acm.org
https://doi.org/10.1145/3690635
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3690635&domain=pdf&date_stamp=2025-01-21

37:2 J. Li et al.

1 Introduction
Code generation aims to automatically generate a program that satisfies a given natural language
requirement [16, 19, 41]. Large Language Models (LLMs) have recently shown impressive
performance in code generation, such as gpt-4 [26] and DeepSeek Coder [12]. During the inference,
LLMs take a prompt as input that consists of several demonstration examples (e.g., <requirement,
code> pairs) and a new requirement. LLMs learn code generation from examples and analogously
generate a new program. The performance of LLMs heavily relies on the prompt [11, 20, 42].
Nowadays, how to make an effective prompt (i.e., Prompting technique) for code generation is still
an open question.

Chain-of-Thought (CoT) prompting [39] is the State-of-the-Art (SOTA) prompting technique.
CoT prompting asks LLMs to generate a CoT and then output the code. A CoT is several intermediate
natural language reasoning steps that describe how to write code step by step. Figure 1 (left)
shows a CoT on code generation. However, CoT prompting brings slight improvements in code
generation. For example, it only improves gpt-3.5-turbo by 0.82 points in Pass@1 upon a real-world
benchmark [7].

Human developers typically follow structured programming to write high-quality programs.
Specifically, developers leverage three programming structures (i.e., sequential, branch, and loop
structures) to decompose complex requirements and think about how to solve them. Intuitively,
structured reasoning steps conduce to structured programs. A similar phenomenon is also found
in fields such as programming education and is known as structured programming thinking [8].
However, CoT prompting can only represent the sequential structures in the code and is naturally
unsuitable for branch and loop structures.

To Alleviate the Above Knowledge Gap, We Propose a Structured CoT (SCoT) for Code Generation.
An SCoT is a series of intermediate reasoning steps built with three programming structures (i.e.,
sequential, branch, and loop structures). Figure 1 (right) shows an SCoT. Compared to the CoT,
our SCoT has two advantages: ¶ Our SCoT comprises three programming structures. By explicitly
generating programming structures, LLMs’ programming abilities are unlocked. We steer LLMs to
think about how to solve requirements using programming logic. · Our SCoT is a suitable midpoint
between natural languages and the code. As shown in Figure 1, the CoT is verbose and aggravates the
burden on models during generation. In contrast, our SCoT is very concise. It uses programming
structures to organize the reasoning process and leverages natural languages to describe specific
operations. It can be viewed as a springboard in code generation. Trained on a large amount of
natural language text and code data, LLMs can generate such SCoTs.

Specifically, an SCoT consists of two parts. The first part is an Input-Output (IO) structure. By
generating an IO structure, LLMs define the entry and exit of the code, which clarifies requirements
and facilitates the following implementation. The second part is a rough problem-solving process.
Any code or algorithm can be composed of three basic structures, i.e., sequence, branch, and loop
structures [3]. We teach LLMs to generate the solving process based on three basic programming
structures. It ensures that our SCoT can show problem-solving processes for wide-ranging programs.
Because LLMs’ training data contain lots of code data, we believe they can generate the above
programming structures.

Based on the SCoT, We Present SCoT Prompting. By prompting several demonstration examples
(i.e., <requirement, SCoT, code>), it teaches LLMs to generate an SCoT and then implement the
code. We apply SCoT prompting to five popular LLMs (i.e., gpt-4-turbo [26], gpt-3.5-turbo [24], and
DeepSeek Coder-Instruct-{1.3B, 6.7B, 33B}). We compare SCoT prompting to CoT prompting on
three representative benchmarks (i.e., HumanEval [7], MBPP [2], and MBCPP [1]). We use test cases
to measure the correctness of generated programs and report the Pass@: (: ∈ [1, 3, 5]). In terms of

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

Structured Chain-of-Thought Prompting for Code Generation 37:3

Fig. 1. The comparison of a CoT and our Structured Chain-of-Thought (SCoT).

Pass@1, SCoT prompting outperforms CoT prompting by up to 13.79% in HumanEval, 12.31% in
MBPP, and 13.59% in MBCPP. The improvements are stable in different LLMs and programming
languages. The human evaluation also shows that human developers prefer programs generated by
SCoT prompting. We also discuss the robustness of SCoT prompting to demonstration examples.
Results show that SCoT prompting does not depend on specific examples, writing styles, and
example orderings.

Our contributions are as follows:

—We propose an SCoT, which uses programming structures to build intermediate reasoning
steps toward the structured code.

—We propose SCoT prompting for code generation. It prompts LLMs to generate an SCoT and
then implement the code.

—Qualitative and quantitative experiments show the superiority of SCoT prompting. We also
discuss the robustness of SCoT prompting.

Article Organization. Section 2 presents our proposed SCoT prompting. Sections 3 and 4 show
the design and results of our study, respectively. Sections 5 and 6 discuss some results and
describe the related work, respectively. Section 7 concludes the article and points out future
directions.

2 Methodology
In this section, we propose an SCoT. An SCoT denotes several intermediate reasoning steps con-
structed by programming structures. Then, we present a novel prompting technique for code
generation named SCoT prompting. SCoT prompting asks LLMs first to generate an SCoT and then
output the final code. In the subsections, we first describe the design of our SCoT and further show
the details of SCoT prompting.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

37:4 J. Li et al.

Fig. 2. Examples of the proposed SCoT.

2.1 SCoT
A standard CoT is several intermediate natural language reasoning steps that lead to the final
answer [39]. The CoT is initially designed for natural language generation (e.g., commonsense
reasoning [31]). Thus, the CoT only uses natural language to describe how to solve a problem step
by step sequentially. Figure 1 shows a CoT on code generation. However, the CoT brings slight
improvements in code generation. For example, CoT prompting only improves gpt-3.5-turbo by
0.82 points in Pass@1 on HumanEval.

In this article, we propose an SCoT. Our motivation is that human developers benefit from
structured programming in coding. In other words, developers rely on three programming structures
(i.e., sequential, branch, and loop structures) to design and implement high-quality programs.
Given a requirement - reading text from a given file, imagine a developer’s thought process.
The developer will use programming structures to design an initial idea: “if the given file
exists: read text from the file; else: raise an error;.” The programming structures
clearly show the solving process and benefit the following code implementation. Thus, we leverage
programming structures to build intermediate reasoning steps, obtaining the SCoT.

Figure 2 shows some SCoTs. Compared to the CoT, our SCoT explicitly introduces three program-
ming structures. Existing work [3] proved that any simple or complex program can be composed
of three basic structures, i.e., sequence structure, branch structure, and loop structure Thus, we
introduce three basic structures, the details of which are as follows:

—Sequential structure. The intermediate steps are sequentially placed, and all steps are at the
same level.

—Branch structure. It starts with a condition and places different intermediate steps for different
results of the condition. In this article, branch structures contain three formats, i.e., if...,
if... else, and if... elif... else. The elif is the shorthand for else if and creates
a nested branch structure.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

Structured Chain-of-Thought Prompting for Code Generation 37:5

Fig. 3. Examples of prompts in SCoT prompting. (a) A prompt for Python, (b) a prompt for C++.

—Loop structure. A set of intermediate steps are repeatedly conducted until conditions are unmet.
In this article, loop structures contain two basic formats: the for loop and the while loop.

We provide a few guidelines for writing SCoTs. ¶ Users should use the above programming
structures (e.g., if... else) to build the SCoT. We allow the nesting between different program-
ming structures. It allows LLMs to design more complex SCoT for some difficult requirements.
As shown in Figure 2, the SCoT flexibly uses various programming structures to build a solving
process. · We recommend that users use natural language to express specific operations in SCoTs,
such as increase depth by 1 in Figure 2. Meanwhile, users can use common formal symbols
(e.g., +, =, and !=) in SCoTs. Experiments in Section 4.3 show that SCoT prompting is robust to
symbols and natural language text.

In addition to three basic structures, we add the IO structure, which contains IO parameters
and their types. Our motivation is that an IO structure is required for a program, which indicates
entry and exit. Generating the IO structure is beneficial to clarify requirements and generate the
following solving process.

2.2 SCoT Prompting
Based on the SCoT, we propose a new prompting technique for code generation named SCoT
prompting. It asks LLMs to generate an SCoT first and then output the final code. To implement
SCoT prompting, we design a special prompt. Figure 3 shows two examples of our prompts for
Python and C++. The designs of prompts are shown as follows:

¶ The components in prompts. Following previous approaches (e.g., few-shot and CoT prompting),
our prompts comprise three components, i.e., natural language instructions, demonstration exam-
ples, and a testing requirement. The natural language instructions are written by authors and tell
the goal of LLMs and related constraints. Demonstration examples are a few <requirement, SCoT,
code> tuples. The instructions and demonstration examples aim to tell LLMs how to generate the
code with SCoTs. Finally, the prompt ends with a testing requirement.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

37:6 J. Li et al.

· The format of prompts. The prompts format combines the above components into a whole
input sequence. The key challenge is how to represent requirements and SCoTs. Our motivation
is that existing LLMs are trained on many code files from open source repositories. These code
files typically consist of many functions with comments. Therefore, we represent requirements
and SCoT in a similar format. Specifically, as shown in Figure 3, the requirement is represented as
a Python signature and a docstring. The SCoT is encoded as line comments. This prompt format
is also consistent with previous studies [1, 7]. Following previous studies [1, 39], we insert two
natural language hints (i.e., Let's think step by step, Write your code here) into prompts.
These hints are empirical tricks and benefit the reasoning abilities of LLMs.

2.3 Implementation Details
SCoT prompting is a prompting technique for code generation, which does not rely on specific LLMs.
Users can flexibly apply SCoT prompting to more powerful LLMs in a plug-and-play fashion. We
select a few (e.g., three) <requirement, code> pairs from real-world benchmarks (i.e., training data)
as example seeds. Then, we manually write the SCoT for seeds and obtain examples—<requirement,
SCoT, code> triples, which are used to make prompts in Figure 3.We recommend users use examples
that cover all three programming structures.

3 Study Design
To assess SCoT prompting, we conduct a large-scale study to answer four ResearchQuestions
(RQs). In this section, we present the details of our study, including datasets, evaluation metrics,
comparison baselines, and implementation details.

3.1 RQs
Our study aims to answer the following RQs.

RQ1: How Does SCoT Prompting Perform in Terms of Accuracy Compared to Baselines? This RQ
aims to verify that SCoT prompting has a higher accuracy than existing prompting techniques on
code generation. We apply three existing prompting techniques and SCoT prompting to five LLMs.
Then, we use test cases to measure the correctness of programs generated by different approaches
and report the Pass@: .

RQ2: Do Developers Prefer Programs Generated by SCoT Prompting? The ultimate goal of code
generation is to assist human developers in writing code. In this RQ, we hire 10 developers (including
industry employees and academic researchers) to review the programs generated by SCoT prompting
and baselines manually. We measure the quality of programs in two aspects: correctness and bad
smells.

RQ3: Is SCoT Prompting Robust to Examples? Prompting techniques may be sensitive to demon-
stration examples [11, 42]. In this RQ, we measure the robustness of SCoT prompting to examples
in four aspects, including example seeds, writing styles of examples, example orderings, and the
number of examples.

RQ4: What Are the Contributions of Different Programming Structures in SCoT Prompting? As stated
in Section 2.1, SCoT prompting introduces three basic structures and the IO structure. This RQ is
designed to analyze the contributions of different structures. We select an LLM as the base model.
Then, we individually remove a programming structure and report the fluctuations in performance.

3.2 Datasets
Following previous studies [6, 7, 23, 43], we conduct experiments on three representative code
generation benchmarks, including the HumanEval in Python, MBPP in Python, and MBCPP in C++.
The details of the benchmarks are described as follows:

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

Structured Chain-of-Thought Prompting for Code Generation 37:7

Table 1. Statistics of the Datasets in Our Experiments

Statistics HumanEval MBPP MBCPP

Language Python Python C++

Train – 474 413
Test 164 500 435

Avg. tests per sample 7.7 3 3

—HumanEval [7] is a Python function-level code generation benchmark, which contains 164
hand-written programming problems. Each programming problem consists of an English
requirement, a function signature, and several test cases, averaging 7.7 test cases per problem.

—MBPP [2] is a Python function-level code generation benchmark. It contains 974 programming
problems that involve simple numeric manipulations or basic usage of standard libraries. Each
problem contains an English requirement, a function signature, and three manually written
test cases for checking functions.

—MBCPP [1] is a C++ function-level code generation benchmark. It consists of 848 programming
problems that are collected by crowd-sourcing. Each problem contains an English description,
a function signature, and three test cases for checking the correctness of functions.

We follow the original splits of three datasets. The statistics of the benchmarks are shown
in Table 1. We randomly pick several samples from training data to make examples in prompts
(Section 2.3). Then, we measure the performance of different approaches on test data. Because
HumanEval does not contain train data, we re-use examples from MBPP in HumanEval. We notice
that researchers have recently proposed repository-level code generation benchmarks [17, 18],
which we leave as future work.

3.3 Evaluation Metrics
Following previous code generation studies [6, 7, 23, 43], we use Pass@: as our evaluation metrics.
Specifically, given a requirement, a code generation model is allowed to generate : programs. The
requirement is solved if any generated programs pass all test cases. We compute the percentage of
solved requirements in total requirements as Pass@: . For Pass@: , a higher value is better. In our
experiments, : is set to 1, 3, and 5, because we think that developers mainly use top five outputs in
real-world scenarios.

Previous work [1, 6, 7] found that standard Pass@: has high variance and proposed an unbiased
Pass@: . We follow previous work and employ the unbiased Pass@: . Specifically, we generate
= ≥ : programs per requirement (in this article, we use = = 20, : ∈ [1, 3, 5]), count the number of
solved requirements 2 , and calculate the unbiased Pass@: :

Pass@: := E
Problems

1 −
(
= − 2
:

)
(
=

:

) . (1)

We also notice that previous code generation studies use text-similarity-based metrics (e.g.,
BLEU [28]). These metrics are initially designed for natural language generation and are poor in
measuring the correctness of programs [7]. Thus, we omit these metrics in our experiments.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

37:8 J. Li et al.

3.4 Comparison Baselines
This article proposes a new prompting technique for code generation. To assess the effectiveness of
our approach, we select three mainstream prompting techniques as baselines:

—Zero-shot prompting [7] directly feeds the requirement into LLMs without examples. Then, it
extracts a generated program from LLMs’ outputs.

—Few-shot prompting [7] randomly selects several <requirement, code> pairs as examples. Given
a requirement, it concatenates examples and the requirement together, making a prompt.
Then, the prompt is fed into LLMs, and LLMs predict a new program.

—CoT prompting [39] is a variant of few-shot prompting. CoT prompting produces a special
prompt consisting of <requirement, CoT, code> triples as examples. A CoT is several interme-
diate natural language reasoning steps.

To ensure the fairness of comparison, all baselines and SCoT prompting have the same number
of examples (i.e., three examples) and example seeds.

The criteria for selecting baselines are three-fold. ¶ SCoT prompting is a prompting technique for
code generation. Thus, we directly compare it to existing prompting techniques for code generation.
We also notice some emerging prompting techniques in other fields, such as Self-Consistency
[35] and Least-to-Most [44]. But these approaches are designed for specific tasks (e.g., Arithmetic
reasoning) and cannot be directly applied to code generation. Thus, we omit them in this article. ·
Our approach is to augment LLMs and can be flexibly applied to different LLMs. Thus, we do not
directly compare LLMs to our approach. ¸ We also omit some rank techniques for code generation
[6].They first use LLMs to generate many candidates and then leverage test cases or neural networks
to re-rank candidates. We think our work and these rank techniques are complementary. Users can
use our approach to generate programs and then use post-processing techniques to select the final
output. We further discuss the complementarity through experiments in Section 5.2.

3.5 Base LLMs
In this article, we conduct experiments on five popular LLMs, including code and general LLMs.
Code LLMs are designed for the source code and are mainly trained with lots of code data. We select
an open source code LLM—DeepSeek Coder [12] as the base model. General LLMs are proposed for
general artificial intelligence and are trained with lots of natural language text and code. We select
two powerful general LLMs as base models, including gpt-4-turbo [26] and gpt-3.5-turbo [24].

DeepSeek Coder [12] is an LLM for programming tasks released by DeepSeek-AI1 in 2 November
2023. DeepSeek Coder consists of a series of code language models, each trained from scratch on
2T tokens, containing 87% code and 13% natural language. DeepSeek Coder provides code models
with 1.3B, 6.7B, and 33B parameter sizes. In terms of model architecture, each model integrates a
decoder-only Transformer, incorporating Rotary Position Embedding and FlashAttention v2. This
article evaluates DeepSeek Coder-Instruct {1.3B, 6.7B, 33B}.

gpt-4-turbo [26] released by OpenAI on 14 March 2023 marks another milestone in the field
of deep learning. gpt-4 demonstrates superior performance compared to previous gpt models
[4, 29, 30]. In our experiments, we use the version gpt-4-turbo-1106. Its training data goes up to
April 2023. It continues the auto-regressive prediction of the next token training objective inherited
from the GPT series models. It incorporates Reinforcement Learning with Human Feedback
(RLHF) [27] and red-teaming techniques. However, the pre-training data scope and scale, model
size, and parameters remain closed-source at present.

1https://www.deepseek.com/

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

https://www.deepseek.com/

Structured Chain-of-Thought Prompting for Code Generation 37:9

gpt-3.5-turbo [24] is an improved gpt-3 model enhanced by a three-stage RLHF algorithm. Apart
from improving instruction-following capabilities, the RLHF algorithm proves highly effective in
mitigating the generation of harmful or toxic content, which is crucial for the practical deployment
of LLMs in security-sensitive contexts. We utilized the released versions of gpt-3.5, namely gpt-3.5-
turbo-1106, with training data up to September 2021. However, similar to gpt-4, the training details,
training data, and model weights are currently closed-source.

Our approach does not rely on specific LLMs and can be applied to different LLMs in a plus-and-
play fashion. In the future, we will explore its usage on more powerful LLMs.

3.6 Sampling Settings
Following previous studies [7, 23, 43], we use nucleus sampling [14] to decode programs from LLMs.
To ensure the fairness of experiments, all baselines and SCoT prompting generate 20 programs
per requirement. By default, all prompts of SCoT prompting and baselines employ three fixed
demonstration examples written by the same annotator. The sampling settings follow previous
work [6]. Specifically, the temperature is 0.8, and the top-p is 0.95.

4 Results and Analysis
4.1 RQ1: How Does SCoT Prompting Perform in Terms of Accuracy Compared to

Baselines?
In the first RQ, we apply SCoT prompting and baselines to three benchmarks and use unit tests to
measure the correctness of generated programs.

Setup. We apply baselines and SCoT prompting to five LLMs (Section 3.5). Then, we measure
the performance of different approaches on three benchmarks (Section 3.2) using the Pass@k
(Section 3.3).

Results. The Pass@: (: ∈ [1, 3, 5]) of different approaches are shown in Table 2. The numbers
in red denote SCoT prompting ’s relative improvements compared to the SOTA baseline–CoT
prompting. “DS Coder-Ins” is the abbreviation of “DeepSeek Coder-Instruct.”

SCoT Prompting Substantially Outperforms Baselines in Three Benchmarks and Five LLMs. Com-
pared to the SOTA baseline–CoT prompting, in terms of Pass@1, SCoT prompting outperforms it by
up to 13.79% in HumanEval, 12.31% in MBPP, and 13.59% in MBCPP. Pass@1 is a strict metric and
is difficult to improve. The improvements show that SCoT prompting can significantly improve the
accuracy of LLMs on code generation and is more promising than existing prompting techniques.

SCoT Prompting Is Effective in Different LLMs and Programming Languages. SCoT prompting is
effective in different LLMs. Compared to CoT prompting, in terms of Pass@1, SCoT prompting
improves gpt-4-turbo by up to 6.49%, gpt-3.5-turbo by up to 13.79%, and DeepSeek Coder-Instruct by
up to 13.59%. Besides, SCoT prompting brings substantial improvements in Python (i.e., HumanEval
and MBPP) and C++ (i.e., MBCPP).

Answer to RQ1: SCoT prompting substantially outperforms baselines in three benchmarks and
five LLMs. In terms of Pass@1, SCoT prompting outperforms the SOTA baseline by up to
13.79% in HumanEval, 12.31% in MBPP, and 13.59% in MBCPP.

4.2 RQ2: Do Developers Prefer Programs Generated by SCoT Prompting?
The ultimate goal of code generation is to assist developers in writing programs. In this RQ, we
hire 10 developers (including industry employees and academic researchers) to manually assess the
programs generated by SCoT prompting and baselines.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

37:10 J. Li et al.

Table 2. The Pass@k (%) of Prompting Approaches on Three Benchmarks

HumanEval MBPP MBCPPLLMs Prompting Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Zero-shot prompting 75.45 83.23 84.94 52.27 59.47 61.82 56.48 68.17 72.17
Few-shot prompting 76.22 86.18 88.26 52.51 61.71 64.88 57.11 69.13 72.84
CoT prompting 78.29 87.11 89.33 53.65 62.43 65.32 57.89 70.07 73.16gpt-4-turbo

SCoT prompting 82.67 89.75 92.43 57.13 66.15 70.43 61.44 73.58 77.52

Relative improvement 5.59% 3.03% 3.47% 6.49% 5.96% 7.82% 6.13% 5.01% 5.96%

Zero-shot prompting 49.73 66.07 71.54 37.07 43.54 48.58 47.53 60.09 64.22
Few-shot prompting 52.47 69.32 74.1 40 49.82 53.13 52.58 63.03 66.11
CoT prompting 53.29 69.76 75.52 41.83 51.04 54.57 53.51 63.84 67.03gpt-3.5-turbo

SCoT prompting 60.64 73.53 77.32 46.98 55.31 58.36 57.06 65.70 68.70

Relative improvement 13.79% 5.40% 2.38% 12.31% 8.37% 6.95% 6.63% 2.91% 2.49%

Zero-shot prompting 73.66 85.88 88.74 48.22 57.48 60.91 49.22 63.45 67.92
Few-shot prompting 73.93 86.04 88.75 48.37 58.15 61.59 50.13 64.11 68.19
CoT prompting 74.97 87.05 89.87 48.85 58.17 61.65 51.12 65.77 69.20DS Coder-Ins-33B

SCoT prompting 79.50 89.12 91.24 52.79 61.67 65.44 55.27 69.81 72.44

Relative improvement 6.04% 2.38% 1.52% 8.07% 6.02% 6.15% 8.12% 6.14% 4.68%

Zero-shot prompting 67.16 82.2 85.84 43.14 52.28 55.76 37.22 57.40 63.25
Few-shot prompting 67.29 83.08 87.03 43.18 54.04 57.85 38.51 58.62 63.96
CoT prompting 67.71 83.49 87.31 43.90 54.31 58.10 39.71 59.66 64.15DS Coder-Ins-6.7B

SCoT prompting 71.06 87.81 90.33 47.69 58.71 62.11 43.58 63.70 67.40

Relative improvement 4.95% 5.17% 3.46% 8.63% 8.10% 6.90% 9.75% 6.77% 5.07%

Zero-shot prompting 56.62 72.03 77.17 34.5 46.18 50.79 28.02 43.30 50.44
Few-shot prompting 57.53 75.83 81.17 35.54 46.60 50.35 29.10 44.33 51.37
CoT prompting 59.81 76.39 81.12 36.22 47.35 51.86 30.16 45.12 51.79DS Coder-Ins-1.3B

SCoT prompting 64.05 81.68 85.08 40.74 50.19 53.97 34.26 48.19 55.73

Relative improvement 7.09% 6.92% 4.88% 12.48% 7.70% 7.19% 13.59% 6.80% 7.61%

Numbers in red denote SCoT prompting’s relative improvements compared to the SOTA baseline-CoT prompting. DS
Coder-Ins, DeepSeek Coder-Instruct. Bold numbers denote the best results in different settings.

Setup. To ensure the fairness of evaluation, we follow settings of human evaluation in previous
studies [13, 19]. The evaluation metrics contain correctness and bad smell. The correctness is to
evaluate whether the generated programs satisfy the requirements. Different from the binary
Pass@: , the correctness is a more fine-grained metric that assigns different scores to programs. We
also check whether the generated programs contain bad code smells. The definitions of the two
metrics are shown as follows:

—Correctness. 0 point: the program is totally inconsistent with the requirement. 1 point: the
program is implemented but misses some details or contains minor mistakes. 2 points: the
program is correctly implemented.

—Bad smells. Previous work [9] summarized 22 common bad smells, as shown in Table 3. We ask
evaluators to read the related book [9] and understand these bad smells. Then, we manually
count the number of bad smells in the generated programs.

We invite 10 developers with 3–5 years of development experience as evaluators. The evaluators
include industry employees and academic researchers who are not co-authors of this article. We
explain the above aspects to evaluators through some examples. We also discuss with evaluators and
set the score of each aspect to an integer, ranging from 0 to 2 (from bad to good). We select a fixed
LLM as the base model (i.e., gpt-3.5-turbo) and collect 200 generated programs (i.e., HumanEval: 50,
MBPP: 50, and MBCPP: 100) per prompting approach, totaling 800 programs. We remove CoTs or
SCoTs from generated programs before evaluations. The 800 programs are divided into five groups,

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

Structured Chain-of-Thought Prompting for Code Generation 37:11

Table 3. The 22 Common Code Smells [9] Used in Human Evaluation

22 Common Code Smells

Mysterious Name Divergent Change Lazy Element Large Class
Duplicated Code Shotgun Surgery Speculative Generality Alternative Classes with Different Interfaces
Long Function Feature Envy Temporary Field Data Class

Long Parameter List Data Clumps Message Chains Refused Bequest
Global Data Primitive Obsession Middle Man
Mutable Data Repeated Switches Insider Trading

Table 4. The Results of Human Evaluation

Approach Correctness ↑ Code Smell ↓
Zero-shot prompting 1.012 1.041
Few-shot prompting 1.119 0.902
CoT prompting 1.225 0.743
SCoT prompting 1.412 0.546

Relative improvement 15.27% 36.08%

The numbers in red denote SCoT prompting’s relative im-
provements compared to the SOTA baseline - CoT prompting.
All the p-values are substantially smaller than 0.05. Bold num-
bers denote the best results in different settings.

with each questionnaire containing one group. We take three measures to ensure the questionnaires
are unbiased. First, unbiased distributions—Each questionnaire contains 160 programs, of which
each prompting approach accounts for 25% (i.e., 40 programs). Second, anonymity—All programs
in questionnaires are anonymous. Developers do not know the sources of the programs under
evaluation. Third, random orders—The order of programs within a questionnaire is determined
randomly. Each group is evaluated by two evaluators, and the final score is the average of two
evaluators’ scores. Evaluators are allowed to search the Internet for unfamiliar concepts.

Before the formal evaluation, we collected 200 generated programs on MBPP (train set) and
conducted a preliminary evaluation. We answered developers’ questions during the preliminary
evaluation and ensured they understood the evaluation metrics and questionnaires correctly.

Results. The human evaluation results are shown in Table 4. The numbers in red denote SCoT
prompting ’s relative improvements compared to the SOTA baseline–CoT prompting. We compute
the C-values and p-values between SCoT prompting and baselines. All p-values are substantially
smaller than 0.05.

SCoT Prompting Substantially Outperforms Baselines in the Correctness and Bad Smells. Particularly,
SCoT prompting outperforms the SOTA baseline–CoT prompting by 15.27% in correctness and
36.08% in bad smells. We attribute the improvements to our proposed SCoT. The SCoT constrains
LLMs to use programming structures to generate intermediate reasoning steps. It allows LLMs to
explore diverse solutions with three basic structures, improving the correctness of the code. Then,
serving as a clear outline, the SCoT steers LLMs to generate high-quality programs with fewer bad
smells.

Figure 4 shows two programs generated by SCoT prompting and few-shot prompting, respectively.
Both programs pass unit tests. But the program from few-shot prompting contains a very complex
statement highlighted in Figure 4. Developers have to put a lot of effort into understanding and
maintaining this program. In contrast, the program from SCoT prompting has good readability, and

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

37:12 J. Li et al.

Fig. 4. Two programs generated by few-shot prompting and SCoT prompting, respectively.

the SCoT clearly explains the code’s behavior. Developers can further use the SCoT as comments
of the program for future maintenance.

Answer to RQ2: Human developers prefer programs generated by SCoT prompting. Specifically,
SCoT prompting outperforms the SOTA baseline by 15.27% in correctness and 36.08% in bad
smells. A case study also shows the program from SCoT prompting is easy to read and maintain.

4.3 RQ3: Is SCoT Prompting Robust to Examples?
As stated in Section 2.3, SCoT prompting requires demonstration examples to make prompts. In
practice, people may write different examples, which makes the performance of SCoT prompting
varies. Thus, in this RQ, we explore the robustness of SCoT prompting to examples.

Setup. As stated in Section 2.3, we select a few <requirement, code> pairs as example seeds and
manually write SCoTs for them, obtaining demonstration examples. In this RQ, we measure the
robustness of SCoT prompting to examples in the following four aspects:

¶ Example seed. This setting aims to validate SCoT prompting does not rely on specific seeds.
We randomly select three example seeds from the training data, and each seed consists of three
<requirement, code> pairs. Then, we hire an annotator to write SCoTs for seeds, obtaining three
groups of examples. The ordering of examples in each group is randomly determined. We measure
the performance of SCoT prompting with different groups of examples.

· Writing style. People have different writing styles. This setting aims to validate that SCoT
prompting does not rely on specific writing styles. We hire three annotators to independently write
SCoTs for the same example seed and obtain three groups of examples. The ordering of examples
in all groups is the same. The three annotators have different background knowledge and working
scenarios. We observe the SCoTs written by three annotators and summarize their writing styles.
Figure 5 illustrates SCoTs written by three annotators. Annotator A is a Ph.D. student in software
engineering. He flexibly uses code keywords and natural language text to write SCoTs. Annotator
B is an industry product manager. She prefers to write SCoTs using colloquial natural language
text. Annotator C is an industry developer. He often uses some formal notations (e.g., variables and
operators) in SCoTs.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

Structured Chain-of-Thought Prompting for Code Generation 37:13

Fig. 5. Three SCoTs written by three annotators. They show different writing styles.

¸ Example ordering. Existing works [42] have found that LLMs are sensitive to the ordering
of examples. In this setting, we make three demonstration examples and randomly change the
ordering of examples. In this way, we obtain three groups of examples. The numbers and writing
styles of these examples are the same. Then, we apply different groups of examples to LLMs and
measure their performance.

¹ The number of examples. It is well known that more examples can improve the performance of
LLMs in downstream tasks [42]. In this setting, we gradually increase the number of examples (i.e.,
from 1 to 5) and observe the performance of SCoT prompting. All examples are annotated by the
same annotator, and the ordering is determined randomly.

Metrics. In the first three settings ¶–¸, we compute the Pass@1 of prompting approaches with
different groups of examples. For ease of analysis, we report the variances of Pass@1. The lower the
variance, the more robust the approach is to the examples. For the fourth setting ¹, we show the
Pass@1 scores of prompting approaches with different numbers of examples. Because zero-shot
prompting does not require demonstration examples, we omit it in this RQ.

Results. Tables 5–7 show the variances of Pass@1 of prompting approaches in different settings.
SCoT prompting substantially outperforms CoT prompting in four settings. It shows that SCoT
prompting is more robust to samples compared with baselines. We also notice slight variances in the
performance of SCoT prompting under different settings. It is expected for prompting techniques

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

37:14 J. Li et al.

Table 5. The Variances ↓ of Pass@1 of Different Prompting Approaches under Different Example Seeds

LLM HumanEval MBPP MBCPP
Few-Shot CoT SCoT Few-Shot CoT SCoT Few-Shot CoT SCoT

gpt-4-turbo 0.77 0.46 0.16 0.92 0.56 0.26 1.12 0.62 0.27
gpt-3.5-turbo 1.02 0.67 0.29 1.31 0.74 0.32 1.37 0.81 0.39
DS-Coder-Ins-33B 1.24 0.82 0.31 1.53 0.84 0.36 1.61 0.98 0.46
DS-Coder-Ins-6.7B 1.43 0.88 0.34 1.68 0.89 0.41 1.72 1.15 0.55
DS-Coder-Ins-1.3B 1.67 0.93 0.39 1.84 0.93 0.44 1.87 1.31 0.63

Bold numbers denote the best results in different settings.

Table 6. The Variances ↓ of Pass@1 of Different Prompting
Approaches under Different Writing Styles

LLM HumanEval MBPP MBCPP
CoT SCoT CoT SCoT CoT SCoT

gpt-4-turbo 0.39 0.13 0.43 0.17 0.28 0.11
gpt-3.5-turbo 0.58 0.22 0.61 0.24 0.54 0.22
DS-Coder-Ins-33B 0.64 0.27 0.68 0.27 0.57 0.25
DS-Coder-Ins-6.7B 0.67 0.31 0.70 0.29 0.59 0.25
DS-Coder-Ins-1.3B 0.67 0.32 0.71 0.30 0.59 0.26

Bold numbers denote the best results in different settings.

Table 7. The Variances ↓ of Pass@1 of Different Prompting Approaches under Different Example Ordering

LLM HumanEval MBPP MBCPP
Few-Shot CoT SCoT Few-Shot CoT SCoT Few-Shot CoT SCoT

gpt-4-turbo 0.13 0.10 0.06 0.14 0.12 0.07 0.15 0.14 0.11
gpt-3.5-turbo 0.16 0.14 0.08 0.16 0.15 0.10 0.20 0.19 0.15
DS-Coder-Ins-33B 0.22 0.15 0.10 0.18 0.17 0.10 0.23 0.21 0.16
DS-Coder-Ins-6.7B 0.23 0.17 0.12 0.20 0.19 0.13 0.25 0.23 0.17
DS-Coder-Ins-1.3B 0.26 0.17 0.12 0.23 0.20 0.14 0.25 0.23 0.19

Bold numbers denote the best results in different settings.

using examples. Similar variances can be found in existing approaches, and SCoT prompting still
outperforms CoT prompting in different settings.

Figure 6 shows the average Pass@1 of prompting approaches with the different numbers of
examples. SCoT prompting outperforms baselines with different numbers of examples. The results
show the superiority of SCoT prompting. Besides, when the number of examples exceeds 3, the
improvements of Pass@1 are very slight. Considering that more examples will decrease inference
efficiency, this article sets the number of examples to 3 by default.

Answer to RQ3: Compared to baselines, SCoT prompting is more robust to examples, including
example seeds, writing styles, example orderings, and the number of examples.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

Structured Chain-of-Thought Prompting for Code Generation 37:15

Fig. 6. The average Pass@1 of prompting approaches with the different numbers of examples.

4.4 RQ4: What Are the Contributions of Different Programming Structures in SCoT
Prompting ?

As stated in Section 2.1, SCoT prompting introduces basic structures (i.e., sequential, branch, and
loop structures) and the IO structure. This RQ is designed to analyze the contributions of different
programming structures.

Setup. We conduct an ablation study by independently removing basic structures and the IO
structure. ¶ Removing branch and loop structures. In this setting, we use a CoT with an IO structure
as the intermediate steps. Because the intermediate steps (e.g., CoTs) naturally contain sequence
structures that cannot be removed, this setting mainly removes branch and loop structures. · Re-
moving IO structures. The SCoT contains a problem-solving process with basic structures without
IO parameters.

Results. The results are shown in Table 8. “w/o” is the abbreviation of “without.”
Basic Structures Are Beneficial to Design a Feasible Solving Process. In Table 8, after removing branch

and loop structures, the performance of SCoT prompting drops obviously. We carefully inspect
failed cases and find that LLMs benefit from using basic structures to clearly write a solving process.
Figure 7 shows the intermediate steps of SCoT prompting and SCoT prompting without basic
structures. SCoT prompting without basic structures uses CoTs, which sequentially describe how to
write the code line by line and contain many ambiguities. For example, the scopes of two iterations
on lines 2 and 4 are unclear. LLMs are likely to misunderstand the CoT and generate incorrect code.
In contrast, SCoT prompting uses three basic structures to describe the solving process. The SCoT
is clear and similar to the code, which benefits the following code implementation.

IO Structures Benefit the Requirement Understanding. In Table 8, after deleting the IO structure,
the performance of SCoT prompting has a slight decrease. We analyze failed cases and think the IO
structure benefits the understanding of requirements. Figure 8 shows two programs from SCoT
prompting and SCoT prompting without the IO structure. We can see that SCoT prompting without
the IO structure wrongly understands the output format and generates an incorrect program. After
adding the IO structure, LLMs first reason about the IO format and correctly return a Boolean value.

Answer to RQ4: Basic and IO structures contribute to the performance of SCoT prompting.
After removing basic structures, the Pass@1 of SCoT prompting decreases by up to 8.2%. After
removing IO structures, the Pass@1 of SCoT prompting decreases by up to 2.37%.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

37:16 J. Li et al.

Table 8. The Results of Ablation Study

LLMs Prompting HumanEval MBPP MBCPP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

gpt-4-turbo

CoT prompting 78.29 87.11 89.33 53.65 62.43 65.32 57.89 70.07 73.16
SCoT prompting 82.67 89.75 92.43 57.13 66.15 70.43 61.44 73.58 77.52
w/o branch+loop 79.44 87.39 89.84 54.46 63.79 66.14 59.04 71.38 74.33
w/o IO 81.79 89.24 91.72 56.73 65.76 69.48 60.52 72.23 76.43

gpt-3.5-turbo

CoT prompting 53.29 69.76 75.52 41.83 51.04 54.57 53.51 63.84 67.03
SCoT prompting 60.64 73.53 77.32 46.98 55.31 58.36 57.06 65.70 68.70
w/o branch+loop 55.67 70.94 76.13 43.36 53.64 56.57 54.79 64.32 67.77
w/o IO 59.65 72.79 77.12 46.13 54.76 57.88 56.61 65.01 68.42

DS-Coder-Ins-33B

CoT prompting 74.97 87.05 89.87 48.85 58.17 61.65 51.12 65.77 69.20
SCoT prompting 79.50 89.12 91.24 52.79 61.67 65.44 55.27 69.81 72.44
w/o branch+loop 75.65 87.97 90.33 49.39 59.36 63.03 52.19 66.73 70.44
w/o IO 78.46 88.58 90.12 51.63 60.69 64.73 54.55 69.12 71.74

DS-Coder-Ins-6.7B

CoT prompting 67.71 83.49 87.31 43.90 54.31 58.10 39.71 59.66 64.15
SCoT prompting 71.06 87.81 90.33 47.69 58.71 62.11 43.58 63.70 67.40
w/o branch+loop 68.39 84.55 88.11 44.63 55.67 58.93 40.64 60.35 65.67
w/o IO 70.32 87.15 89.83 46.56 57.87 61.80 42.79 63.04 66.59

DS-Coder-Ins-1.3B

CoT prompting 59.81 76.39 81.12 36.22 47.35 51.86 30.16 45.12 51.79
SCoT prompting 64.05 81.68 85.08 40.74 50.19 53.97 34.26 48.19 55.73
w/o branch+loop 60.37 77.86 82.33 37.54 48.66 52.75 31.65 46.33 52.12
w/o IO 63.44 80.92 84.64 40.10 49.88 53.21 33.67 47.72 55.17

DS-Coder-Ins, DeepSeek Coder-Instruct; w/o, without. Bold numbers denote the best results in different settings.

Fig. 7. The comparison of SCoT prompting and SCoT prompting without basic structures.

5 Discussion
5.1 SCoT vs. Pseudocode
We notice that the SCoT is similar to the pseudocode. The SCoT and pseudocode both contain
an IO structure and a problem-solving process. We randomly select 100 generated SCoTs and
manually review them. We find that 26% of SCoTs are very close to the pseudocode. On one hand,

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

Structured Chain-of-Thought Prompting for Code Generation 37:17

Fig. 8. The comparison of SCoT prompting and SCoT prompting without the IO structure.

Table 9. The Comparison of SCoT-P Prompting and SCoT Prompting

HumanEval MBPP MBCPPApproach Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

CoT prompting 53.29 69.76 75.52 41.83 51.04 54.57 53.51 63.84 67.03
SCoT-P prompting 55.23 70.33 75.94 43.28 52.16 55.77 54.25 64.09 67.78
SCoT prompting 60.64 73.53 77.32 46.98 55.31 58.36 57.06 65.70 68.70

Relative improvement 9.80% 4.55% 1.82% 8.55% 6.04% 4.64% 5.18% 2.51% 1.36%

The numbers in red denote SCoT prompting’s relative improvements compared to SCoTP prompting. Bold numbers denote
the best results in different settings.

we think the similarity enhances the usability of our approach. For example, users can quickly
determine a program’s behavior based on its SCoT. The SCoT can also be inserted into the comment
and benefits future maintenance. On the other hand, the majority of SCoTs (74%) differ from the
pseudocode because they are more abstract. Specifically, SCoTs tend to use natural languages to
summarize an operation, e.g., calculate the sum of list1. But the pseudocode contains more
implementation details, e.g., sum ← 0; for i in list1: sum ← sum + i;.

Compared to the pseudocode, we think the SCoT is a better choice for intermediate steps. Because
an SCoT naturally decomposes code generation into two steps. LLMs first focus on exploring
diverse solutions and then implement a program in a standardized way. To validate this point, we
design a variant of SCoT prompting, named SCoT-P prompting. It deletes programming structure-
related descriptions from instructions and considers three human-written pseudocode snippets as
intermediate steps. Figure 9 shows a prompt of SCoT-P prompting. We apply SCoT-P prompting and
SCoT prompting to gpt-3.5-turbo and measure their accuracy.The results are shown in Table 9. SCoT
prompting substantially outperforms SCoT-P prompting on three benchmarks. The improvements
show the superiority of our SCoT.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

37:18 J. Li et al.

Fig. 9. The prompt of SCoT-P prompting.

5.2 SCoT Prompting vs. Post-Processing Techniques
Some recent studies [6, 15, 41] propose post-processing techniques to improve the performance of
LLMs on code generation. Given a requirement, they first sample many programs from LLMs and
then use test cases or neural networks to post-process sampled programs. For example, CodeT [6]
is a popular post-processing technique. CodeT does large-scale sampling and executes sampled
programs on auto-generated test cases. Based on execution results, the programs are re-ranked. In
this article, we do not directly compare our approach to rank techniques due to two reasons.

SCoT Prompting and Post-Processing Techniques Have Different Focuses, and They Are Complemen-
tary. Our work aims to design a new prompting technique and improve the accuracy of LLMs in
code generation. Post-processing techniques do not care about LLMs and aim to refine the outputs
of LLMs. In practice, users can use SCoT prompting to generate many programs and then leverage
post-processing techniques to get the final code.

To verify the complementarity between SCoT prompting and post-processing techniques, we
conduct an exploratory experiment. We select gpt-3.5-turbo as a base model and progressively
introduce CodeT and SCoT prompting. The results on MBPP are shown in Figure 10. We can see that
the performance of gpt-3.5-turbo is continually improved by adding CodeT and SCoT prompting.

Post-Processing Techniques Rely on Execution Environments. Post-processing techniques require
executing programs on test cases and using execution results to re-rank programs. In many realistic
programming scenarios, users want to get code suggestions for an unfinished project. It is infeasible
to execute auto-generated programs. Thus, we think rank techniques have limited application
scenarios and make additional use of the execution results. Our approach works in a general
scenario and does not use execution results. Thus, it is unfair to directly compare SCoT prompting
to rank techniques.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

Structured Chain-of-Thought Prompting for Code Generation 37:19

Fig. 10. The complementarity between CodeT and SCoT prompting.

5.3 Threats to Validity
There are three main threats to the validity of our work:

¶ The generalizability of experimental results. To mitigate this threat, we carefully select the
benchmarks, metrics, and baselines. Following previous studies [1, 2, 7], we pick three representative
code generation benchmarks. They are hand-written or collected from real-world programming
communities, and cover two popular languages (i.e., Python and C++). For evaluation metrics, we
select a widely used metric Pass@: , which utilizes test cases to check the correctness of programs.
We use the unbiased Pass@: which is more reliable [7]. For comparison baselines, we select
the SOTA prompting techniques and conduct a comprehensive comparison in Section 4. SCoT
prompting and baselines have the same example seeds and maximum generation lengths.

· The design of prompts. Existing work [42] found that LLMs are sensitive to the design of
prompts (e.g., natural language instructions and demonstration examples). In our prompts, we
focus on exploring the SCoT and set other factors constant. Therefore, there may be more effective
prompts to implement SCoT prompting, e.g., clearer natural language instructions, and better
examples. These investigations are beyond the scope of this article and we leave them to future
work.

¸ Data leakage. Existing LLMs are trained with extensive code files from open source com-
munities. Their training data may contain the experimental benchmarks, leading to data leakage.
However, we think that it does not affect the fairness of our experiments. In this article, we select a
specific LLM (e.g., gpt-3.5-turbo) as the base model and apply different prompting techniques to it.
Thus, the reported relative improvements between baselines and our approach are credible. In the
future, we will add the latest benchmarks to alleviate this threat.

6 Related Work
LLMs for source code are large-scale neural networks that are pre-trained with a large corpus
consisting of natural language text and source code. Nowadays, LLMs for source code have been
expanding and can be divided into two categories: foundation models and instruction-tuned models.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

37:20 J. Li et al.

Foundationmodels are pre-trained on a large-scale corpuswith the next-token prediction objective.
They are mainly used to continually complete the given context, such as code completion. After the
success of GPT series [4, 29, 30] in NLP, OpenAI fine-tunes GPT models on code to produce closed-
source Codex (i.e., code-davinci-002) [7]. There follow many open source replication attempts, e.g.,
CodeParrot [33], CodeGen [23], CodeGeeX [43], InCoder [10], StarCoder [21], and CodeT5+ [37].

Instruction-tuned models are models after instruction tuning [38]. Instruction tuning trains models
to understand human users’ instructions and perform tasks by following instructions. gpt-3.5-
turbo [25] is trained with human feedback [27], powerful on both natural language tasks and
programming tasks. Many attempts to train an “open source gpt-3.5-turbo.” Alpaca [32] is LLaMA
[34] tuned using self-instruct [36] and gpt-3.5-turbo’s feedback. Code Alpaca [5] is LLaMA tuned
using self-instruct and gpt-3.5-turbo’s feedback, with instructions focusing on programming tasks.
WizardCoder [22] is StarCoder [21] tuned using Evol-Instruct [40] and gpt-3.5-turbo’s feedback
with Code Alpaca’s dataset as seed dataset. InstructCodeT5+ [37] is CodeT5+ [37] tuned on Code
Alpaca’s dataset.

Prompting Techniques. With the enormous number of parameters (e.g., code-davinci-002: 175
billion parameters), it is hard to directly fine-tune LLMs on code generation. Prompting techniques
are a popular approach, which leverages LLMs to generate code by inputting a special prompt.

Early, researchers proposed zero-shot prompting and few-shot prompting. Zero-shot prompting
concatenates a task instruction (e.g., please generate a program based on the requirement)
and a requirement together, making a prompt. Based on the zero-shot prompting, few-shot prompt-
ing further adds several 〈 requirement, code 〉 pairs to the prompts, so that LLMs can learn code
generation from given examples.

The CoT prompting [39] is a recently proposed prompting technique. CoT prompting asks LLMs
first to generate CoTs (i.e., intermediate natural language reasoning steps) and then output the final
code. It allows LLMs to first design a solving process that leads to the code. CoT prompting has
achieved the SOTA results in natural language generation and sparked lots of follow-up research,
such as self-consistency prompting [35] and least-to-most prompting [44]. But these prompting
techniques are designed for natural language generation and bring slight improvements in code
generation.

In this article, we propose a novel prompting technique named SCoT prompting. Different from
standard CoT prompting, SCoT prompting explicitly introduces programming structures and asks
LLMs to generate intermediate reasoning steps with programming structures. We compare CoT
prompting and SCoT prompting in Section 4. The results show that SCoT prompting significantly
outperforms CoT prompting in three benchmarks.

7 Conclusion and Future Work
LLMswith CoT prompting is the SOTA approach to generating code. It first generates a CoT and then
outputs the code. A CoT is several intermediate natural language reasoning steps. However, CoT
prompting still has low accuracy in code generation. This article proposes an SCoT and presents a
new prompting technique for code generation, named SCoT prompting. SCoT prompting asks LLMs
to generate an SCoT using programming structures (i.e., sequential, branch, and loop structures).
Then, LLMs generate the code based on the SCoT. A large-scale study on three benchmarks shows
that SCoT prompting significantly outperforms CoT prompting in Pass@: and human evaluation.
Besides, SCoT prompting is robust to examples and obtains stable improvements.

In the future, we will explore new prompting techniques for code generation. For example, source
code can be represented by a tree (e.g., abstract syntax tree). We can design a tree-based prompting
technique, which uses LLMs to generate a tree.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

Structured Chain-of-Thought Prompting for Code Generation 37:21

References
[1] Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin Ahmad,

Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian Ding, Varun Kumar, Nathan Fulton, Arash
Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng Qian, Murali Krishna Ramanathan, and Ramesh Nallapati. 2023.
Multi-lingual evaluation of code generation models. In the 11th International Conference on Learning Representations,
ICLR 2023. OpenReview.net. Retrieved from https://openreview.net/forum?id=Bo7eeXm6An8

[2] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,
Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. 2021. Program synthesis with large language models.
arXiv:2108.07732. Retrieved from https://arxiv.org/abs/2108.07732

[3] Corrado Böhm and Giuseppe Jacopini. 1966. Flow diagrams, turing machines and languages with only two formation
rules. Communications of the ACM 9, 5 (1966), 366–371. DOI: https://doi.org/10.1145/355592.365646

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, TomHenighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020.
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). Retrieved
from https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[5] Sahil Chaudhary. 2023. Code Alpaca: An Instruction-Following LLaMA Model for Code Generation. Retrieved from
https://github.com/sahil280114/codealpaca

[6] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023. CodeT:
Code generation with generated tests. In the 11th International Conference on Learning Representations, ICLR 2023.
OpenReview.net. Retrieved from https://openreview.net/forum?id=ktrw68Cmu9c

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser,
Mohammad Bavarian, ClemensWinter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021.
Evaluating large language models trained on code. arXiv:2107.03374. Retrieved from https://arxiv.org/abs/2107.03374

[8] Anna Eckerdal, Michael Thuné, and Anders Berglund. 2005. What does it take to learn ’programming thinking’? In
International Computing Education Research Workshop 2005, ICER ’05. Richard J. Anderson, Sally Fincher, and Mark
Guzdial (Eds.), ACM, 135–142. DOI: https://doi.org/10.1145/1089786.1089799

[9] Martin Fowler. 2002. Refactoring: Improving the design of existing code. In Extreme Programming and Agile Methods -
XP/Agile Universe 2002, 2nd XP Universe and 1st Agile Universe Conference. Don Wells and Laurie A. Williams (Eds.),
Lecture Notes in Computer Science, Vol. 2418, Springer, 256. DOI: https://doi.org/10.1007/3-540-45672-4_31

[10] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih, Luke Zettle-
moyer, and Mike Lewis. 2023. InCoder: A generative model for code infilling and synthesis. In the 11th International
Conference on Learning Representations, ICLR 2023. OpenReview.net. Retrieved from https://openreview.net/forum?
id=hQwb-lbM6EL

[11] Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang, and Michael R. Lyu. 2023. What makes
good in-context demonstrations for code intelligence tasks with LLMs? In 38th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2023. IEEE, 761–773. DOI: https://doi.org/10.1109/ASE56229.2023.00109

[12] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli
Luo, Yingfei Xiong, and Wenfeng Liang. 2024. DeepSeek-Coder: When the large language model meets programming.
The rise of code intelligence. arXiv:2401.14196. Retrieved from https://doi.org/10.48550/ARXIV.2401.14196

[13] Yiyang Hao, Ge Li, Yongqiang Liu, Xiaowei Miao, He Zong, Siyuan Jiang, Yang Liu, and He Wei. 2022. AixBench:
A code generation benchmark dataset. arXiv:2206.13179. Retrieved from https://doi.org/10.48550/arXiv.2206.13179

[14] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The curious case of neural text degeneration.
In 8th International Conference on Learning Representations, ICLR 2020 . OpenReview.net. Retrieved from https://
openreview.net/forum?id=rygGQyrFvH

[15] Jeevana Priya Inala, Chenglong Wang, Mei Yang, Andres Codas, Mark Encarnación, Shuvendu Lahiri, Madanlal
Musuvathi, and Jianfeng Gao. 2022. Fault-aware neural code rankers. Advances in Neural Information Processing
Systems 35 (2022), 13419–13432.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

https://openreview.net/forum?id=Bo7eeXm6An8
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/355592.365646
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://github.com/sahil280114/codealpaca
https://openreview.net/forum?id=ktrw68Cmu9c
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/1089786.1089799
https://doi.org/10.1007/3-540-45672-4_31
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://doi.org/10.1109/ASE56229.2023.00109
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/arXiv.2206.13179
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH

37:22 J. Li et al.

[16] Jia Li, Ge Li, Zhuo Li, Zhi Jin, Xing Hu, Kechi Zhang, and Zhiyi Fu. 2023c. CodeEditor: Learning to edit source code
with pre-trained models. ACM Transactions on Software Engineering and Methodology 32, 6 (2023), 143:1–143:22. DOI:
https://doi.org/10.1145/3597207

[17] Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. 2024a. EvoCodeBench: An evolving code generation
benchmark aligned with real-world code repositories. arXiv:2404.00599. Retrieved from https://doi.org/10.48550/
ARXIV.2404.00599

[18] Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu, Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng Fang, Lanshen
Wang, Jiazheng Ding, Xuanming Zhang, Yuqi Zhu, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang, Yongbin Li, Bin
Gu, and Mengfei Yang. 2024b. DevEval: A manually-annotated code generation benchmark aligned with real-world
code repositories. In Findings of the Association for Computational Linguistics ACL 2024. Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (Eds.), Association for Computational Linguistics, Bangkok, Thailand, 3603–3614. DOI: https:
//aclanthology.org/2024.findings-acl.214

[19] Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing Hu. 2023b. SkCoder: A sketch-based approach for automatic
code generation. In 45th IEEE/ACM International Conference on Software Engineering, ICSE 2023. IEEE, 2124–2135. DOI:
https://doi.org/10.1109/ICSE48619.2023.00179

[20] Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin. 2024c. AceCoder: An effective prompting technique specialized
in code generation. ACM Transactions on Software Engineering and Methodology (Jul 2024), 1049–331X. DOI: https:
//doi.org/10.1145/3675395

[21] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier
Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade,
Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy V., Jason T. Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean
Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. 2023a. StarCoder: May the source be with
you! Transactions on Machine Learning Research (2023). Retrieved from https://openreview.net/forum?id=KoFOg41haE

[22] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei Lin, and
Daxin Jiang. 2024. WizardCoder: Empowering code large language models with Evol-Instruct. In the 12th International
Conference on Learning Representations, ICLR 2024. OpenReview.net. Retrieved from https://openreview.net/forum?
id=UnUwSIgK5W

[23] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong.
2023. CodeGen: An open large language model for code with multi-turn program synthesis. In the 11th International
Conference on Learning Representations, ICLR 2023. OpenReview.net. Retrieved from https://openreview.net/forum?
id=iaYcJKpY2B_

[24] OpenAI. 2023a. gpt-3.5-turbo. Retrieved from https://platform.openai.com/docs/models/gpt-3-5
[25] OpenAI. 2023b. gpt-3.5-turbo. Retrieved from https://platform.openai.com/docs/models/gpt-3-5-turbo
[26] OpenAI. 2023c. GPT-4 Technical Report. arXiv:2303.08774. Retrieved from https://doi.org/10.48550/ARXIV.2303.08774
[27] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sand-

hini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems 35 (2022), 27730–27744.

[28] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A method for automatic evaluation of
machine translation. In 40th Annual Meeting of the Association for Computational Linguistics, 311–318.

[29] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving Language Understanding
by Generative Pre-Training. Retrieved from https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/
language-unsupervised/language_understanding_paper.pdf

[30] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language Models Are
Unsupervised Multitask Learners. Retrieved from https://insightcivic.s3.us-east-1.amazonaws.com/language-models.
pdf

[31] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2019. CommonsenseQA: A question answering
challenge targeting commonsense knowledge. In 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019 . Jill Burstein, Christy Doran, and
Thamar Solorio (Eds.), Vol. 1 (Long and Short Papers), Association for Computational Linguistics, 4149–4158. DOI:
https://doi.org/10.18653/v1/n19-1421

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

https://doi.org/10.1145/3597207
https://doi.org/10.48550/ARXIV.2404.00599
https://doi.org/10.48550/ARXIV.2404.00599
https://aclanthology.org/2024.findings-acl.214
https://aclanthology.org/2024.findings-acl.214
https://doi.org/10.1109/ICSE48619.2023.00179
https://doi.org/10.1145/3675395
https://doi.org/10.1145/3675395
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://doi.org/10.48550/ARXIV.2303.08774
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://doi.org/10.18653/v1/n19-1421

Structured Chain-of-Thought Prompting for Code Generation 37:23

[32] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B.
Hashimoto. 2023. Stanford Alpaca: An Instruction-Following LLaMA Model. Retrieved from https://github.com/tatsu-
lab/stanford_alpaca

[33] CodeParrot Team. 2022. CodeParrot. Retrieved from https://huggingface.co/codeparrot/codeparrot
[34] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste

Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume
Lample. 2023. LLaMA: Open and efficient foundation language models. arXiv:2302.13971. Retrieved from https:
//doi.org/10.48550/ARXIV.2302.13971

[35] Xuezhi Wang, JasonWei, Dale Schuurmans,Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny
Zhou. 2023c. Self-consistency improves chain of thought reasoning in language models. In the 11th International
Conference on Learning Representations, ICLR 2023. OpenReview.net. Retrieved from https://openreview.net/pdf?id=
1PL1NIMMrw

[36] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi.
2023a. Self-instruct: Aligning language models with self-generated instructions. In the 61st Annual Meeting of the
Association for Computational Linguistics, Vol. 1, Long Papers, Association for Computational Linguistics, Toronto,
Canada, 13484–13508. DOI: https://aclanthology.org/2023.acl-long.754

[37] Yue Wang, Hung Le, Akhilesh Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi. 2023b. CodeT5+: Open code
large language models for code understanding and generation. In the 2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023. Houda Bouamor, Juan Pino, and Kalika Bali (Eds.), Association for Computational
Linguistics, 1069–1088. DOI: https://doi.org/10.18653/V1/2023.EMNLP-MAIN.68

[38] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and
Quoc V. Le. 2022a. Finetuned language models are zero-shot learners. In the 10th International Conference on Learning
Representations, ICLR 2022 . OpenReview.net. Retrieved from https://openreview.net/forum?id=gEZrGCozdqR

[39] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and
Denny Zhou. 2022b. Chain of thought prompting elicits reasoning in large language models. In Advances in Neural
Information Processing Systems. Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (Eds.). Retrieved
from https://openreview.net/forum?id=_VjQlMeSB_J

[40] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei Lin, and Daxin
Jiang. 2024. WizardLM: Empowering large pre-trained language models to follow complex instructions. In the 12th
International Conference on Learning Representations, ICLR 2024. OpenReview.net. DOI: https://openreview.net/forum?
id=CfXh93NDgH

[41] Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023. Self-edit: Fault-aware code editor for code generation. In
the 61st Annual Meeting of the Association for Computational Linguistics. Anna Rogers, Jordan L. Boyd-Graber,
and Naoaki Okazaki (Eds.), Vol. 1, Long Papers, Association for Computational Linguistics, 769–787. DOI: https:
//doi.org/10.18653/v1/2023.acl-long.45

[42] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate before use: Improving few-shot
performance of language models. In 38th International Conference on Machine Learning, ICML 2021. Marina Meila
and Tong Zhang (Eds.), Virtual Event (Proceedings of Machine Learning Research, Vol. 139), PMLR, 12697–12706.
Retrieved from http://proceedings.mlr.press/v139/zhao21c.html

[43] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, Yang
Li, Teng Su, Zhilin Yang, and Jie Tang. 2023. CodeGeeX: A pre-trained model for code generation with multilingual
evaluations on HumanEval-X. arXiv:2303.17568. Retrieved from https://doi.org/10.48550/ARXIV.2303.17568

[44] Denny Zhou, Nathanael Schärli, Le Hou, JasonWei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier
Bousquet, Quoc V. Le, and Ed H. Chi. 2023. Least-to-most prompting enables complex reasoning in large language
models. In the 11th International Conference on Learning Representations, ICLR 2023. OpenReview.net. Retrieved from
https://openreview.net/pdf?id=WZH7099tgfM

Received 27 February 2024; revised 19 June 2024; accepted 10 August 2024

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 2, Article 37. Publication date: January 2025.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/codeparrot/codeparrot
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://aclanthology.org/2023.acl-long.754
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.68
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
http://proceedings.mlr.press/v139/zhao21c.html
https://doi.org/10.48550/ARXIV.2303.17568
https://openreview.net/pdf?id=WZH7099tgfM

	Abstract
	1 Introduction
	2 Methodology
	2.1 SCoT
	2.2 SCoT Prompting
	2.3 Implementation Details

	3 Study Design
	3.1 RQs
	3.2 Datasets
	3.3 Evaluation Metrics
	3.4 Comparison Baselines
	3.5 Base LLMs
	3.6 Sampling Settings

	4 Results and Analysis
	4.1 RQ1: How Does SCoT Prompting Perform in Terms of Accuracy Compared to Baselines?
	4.2 RQ2: Do Developers Prefer Programs Generated by SCoT Prompting?
	4.3 RQ3: Is SCoT Prompting Robust to Examples?
	4.4 RQ4: What Are the Contributions of Different Programming Structures in SCoT Prompting ?

	5 Discussion
	5.1 SCoT vs. Pseudocode
	5.2 SCoT Prompting vs. Post-Processing Techniques
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References

